cosmicray Documentation
Release 0.0.5

Samir Omerovic

Mar 16, 2018

Contents

1 Cosmicray
1.1 Develop a client for any http API and document its quirks and features 1

2 Indices and tables 5

CHAPTER 1

Cosmicray

1.1 Develop a client for any http APl and document its quirks and
features

Cosmicray is a simple and high level http client API development framework. It provides the basic building blocks for
defining enpoints, handling a request response and automatically converting the result into to Models.

Motivation:
 Ease of use
» Configureability and customization on every level
» Namespace different backends (one client to rule them all)
* Separate route definitions / response handling from models or “business logic”
* Ability to validate requests before making them
* Authenticate each request as needed

* Ability to associate routes to models

Warning: Cosmicray is under development

1.1.1 Install

$ pip install cosmicray

cosmicray Documentation, Release 0.0.5

1.1.2 Quick start

Create App

>>> from cosmicray import Cosmicray
>>> api = Cosmicray('myapp', domain='http://mydomain.com')

Define routes and response handlers

Using the app we created, we can now add routes for it and define a response handler for each one. The response
handler is simply a regular function that accepts a single argument of type requests.Response and returns the processed
result.

>>> @api.route('/vl/dogs/ ', ['GET', 'POST', 'PUT', 'DELETE'])
>>> def dogs (response) :
return response. json ()

* The decorator api.route creates an instance of cosmicray.Route named dogs and stores the given function inter-
nally as the response handler.

* Instances of cosmicray.Route are callable and accept parameters:
— model_cls: Optional: Class that implements _make(cls, response) classmethod.
— **kwargs: Keyword arguments.
* urlargs: Mapping for url formatting arguments
* headers: Mapping for headers
params: Mapping for query parameters
% data, json, files: Request body
* authenticator: Authenticator callback
* &rest: Requests keyword arguments
e When and instance of cosmicray.Route is called, it returns a Request object and with this you can:

— Use functions defined for each http method (ex: get(), post(), put(), delete())

Override any parameters passed in (ex: params, headers, etc.) with setters

Automatically validates given parameters against the defined parameters on the Route

Authenticates the request, if the app was configured with an authenticator

After the response is handled by the response handler, the result is automatically mapped to the model
class, if one was provided

How to make requests

>>> dogs () .get ()
>>> dogs (urlargs={id: 12345}) .get ()

>>> dogs (urlargs={'id': 12345}, Jjson={'age': 4}) .put ()

(
(
>>> dogs (json={'name': 'Manu'}) .post ()
(
>>> dogs (urlargs={'id': 12345}) .delete ()

2 Chapter 1. Cosmicray

cosmicray Documentation, Release 0.0.5

To specify request parameters

>>> dogs (params={'breed': 'husky'},
headers={'Content-Type': 'application/json'}) .get ()

Authenticating requests

Often you’ll need to authenticate requests to access private resource and Cosmicray has a built-in mechanism to
perform this step.

>>> def authenticator (request):
if not request.is_request_for (login):
auth = login(json={'username': 'me', 'password': 'mysecret'}) .post ()
return request.set_headers ({'X-AUTH-TOKEN': auth['token']})
return request

>>> @api.route('/oauth', ['POST'])
def login (response):
"""Get an auth token for the given credentials"""
return response. json ()

>>> Qapi.route('/private/resource', ['GET'])
def private_resource (response) :
"""Must be authenticated to access this"""
return response. json ()

>>> api.configure (authenticator=authenticator)
>>> # Now the private resourse will be automatically updated to include auth headers
>>> private_resource.get ()

1.1.3 Models

Basics

* Cosmicray ships with a built-in Model class

 This base class is bound to a specific route handler and defines all the fields that would get mapped to a response
or be part as the payload for post and put requests

« It automatically uses its defined fields as url parameters and as request body
* Provides functions to make http calls (ex: get, create, update, delete)

* You can override default behavior, such as create/update paylods

>>> from cosmicray.model import Model
>>> class Dog (Model) :
__route__ = dogs
__slots___ = [
tid',
'name',
'breed’',
rage'
..]
>>> manu = Dog(name='Manu', age=4).create()
>>> manu.breed = 'Husky'

1.1. Develop a client for any http APl and document its quirks and features 3

cosmicray Documentation, Release 0.0.5

>>> manu.update ()

>>> manu.delete()

>>> manu = Dog (id=12345) .get ()
>>> alldogs = Dog() .get ()

Relationships with other models/routes

>>> from cosmicray.model import relationhip, Model, ModelParam
>>> class Cat (cosmicray.model.Model) :
__route__ = cats
_ slots_ = [
'id',
'name’',

age
1

friends = relationhip('Friend', urlargs={'id': ModelParam('id')})

If you don’t want to use cosmicray.Model as your base, you can define your own OR even use just use collec-
tions.namedtuple as the model.

>>> class MyModel (object) :
@classmethod
def _make(cls, response):
obj cls ()
do stuff with the response
return obj

4 Chapter 1. Cosmicray

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

	Cosmicray
	Develop a client for any http API and document its quirks and features

	Indices and tables

