
cosmicray Documentation
Release 0.0.5

Samir Omerovic

Mar 16, 2018

Contents

1 Cosmicray 1
1.1 Develop a client for any http API and document its quirks and features 1

2 Indices and tables 5

i

ii

CHAPTER 1

Cosmicray

1.1 Develop a client for any http API and document its quirks and
features

Cosmicray is a simple and high level http client API development framework. It provides the basic building blocks for
defining enpoints, handling a request response and automatically converting the result into to Models.

Motivation:

• Ease of use

• Configureability and customization on every level

• Namespace different backends (one client to rule them all)

• Separate route definitions / response handling from models or “business logic”

• Ability to validate requests before making them

• Authenticate each request as needed

• Ability to associate routes to models

Warning: Cosmicray is under development

1.1.1 Install

$ pip install cosmicray

1

cosmicray Documentation, Release 0.0.5

1.1.2 Quick start

Create App

>>> from cosmicray import Cosmicray
>>> api = Cosmicray('myapp', domain='http://mydomain.com')

Define routes and response handlers

Using the app we created, we can now add routes for it and define a response handler for each one. The response
handler is simply a regular function that accepts a single argument of type requests.Response and returns the processed
result.

>>> @api.route('/v1/dogs/{id}', ['GET', 'POST', 'PUT', 'DELETE'])
>>> def dogs(response):
... return response.json()

• The decorator api.route creates an instance of cosmicray.Route named dogs and stores the given function inter-
nally as the response handler.

• Instances of cosmicray.Route are callable and accept parameters:

– model_cls: Optional: Class that implements _make(cls, response) classmethod.

– **kwargs: Keyword arguments.

* urlargs: Mapping for url formatting arguments

* headers: Mapping for headers

* params: Mapping for query parameters

* data, json, files: Request body

* authenticator: Authenticator callback

* &rest: Requests keyword arguments

• When and instance of cosmicray.Route is called, it returns a Request object and with this you can:

– Use functions defined for each http method (ex: get(), post(), put(), delete())

– Override any parameters passed in (ex: params, headers, etc.) with setters

– Automatically validates given parameters against the defined parameters on the Route

– Authenticates the request, if the app was configured with an authenticator

– After the response is handled by the response handler, the result is automatically mapped to the model
class, if one was provided

How to make requests

>>> dogs().get()
>>> dogs(urlargs={id: 12345}).get()
>>> dogs(json={'name': 'Manu'}).post()
>>> dogs(urlargs={'id': 12345}, json={'age': 4}).put()
>>> dogs(urlargs={'id': 12345}).delete()

2 Chapter 1. Cosmicray

cosmicray Documentation, Release 0.0.5

To specify request parameters

>>> dogs(params={'breed': 'husky'},
... headers={'Content-Type': 'application/json'}).get()

Authenticating requests

Often you’ll need to authenticate requests to access private resource and Cosmicray has a built-in mechanism to
perform this step.

>>> def authenticator(request):
... if not request.is_request_for(login):
... auth = login(json={'username': 'me', 'password': 'mysecret'}).post()
... return request.set_headers({'X-AUTH-TOKEN': auth['token']})
... return request
...
>>> @api.route('/oauth', ['POST'])
... def login(response):
... """Get an auth token for the given credentials"""
... return response.json()
...
>>> @api.route('/private/resource', ['GET'])
... def private_resource(response):
... """Must be authenticated to access this"""
... return response.json()
...
>>> api.configure(authenticator=authenticator)
>>> # Now the private resourse will be automatically updated to include auth headers
>>> private_resource.get()

1.1.3 Models

Basics

• Cosmicray ships with a built-in Model class

• This base class is bound to a specific route handler and defines all the fields that would get mapped to a response
or be part as the payload for post and put requests

• It automatically uses its defined fields as url parameters and as request body

• Provides functions to make http calls (ex: get, create, update, delete)

• You can override default behavior, such as create/update paylods

>>> from cosmicray.model import Model
>>> class Dog(Model):
... __route__ = dogs
... __slots__ = [
... 'id',
... 'name',
... 'breed',
... 'age'
...]
>>> manu = Dog(name='Manu', age=4).create()
>>> manu.breed = 'Husky'

1.1. Develop a client for any http API and document its quirks and features 3

cosmicray Documentation, Release 0.0.5

>>> manu.update()
>>> manu.delete()
>>> manu = Dog(id=12345).get()
>>> alldogs = Dog().get()

Relationships with other models/routes

>>> from cosmicray.model import relationhip, Model, ModelParam
>>> class Cat(cosmicray.model.Model):
... __route__ = cats
... __slots__ = [
... 'id',
... 'name',
... 'age'
...]
... friends = relationhip('Friend', urlargs={'id': ModelParam('id')})

If you don’t want to use cosmicray.Model as your base, you can define your own OR even use just use collec-
tions.namedtuple as the model.

>>> class MyModel(object):
... @classmethod
... def _make(cls, response):
... obj = cls()
... ... do stuff with the response
... return obj

4 Chapter 1. Cosmicray

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

	Cosmicray
	Develop a client for any http API and document its quirks and features

	Indices and tables

